The Manifestation of Stopping Sets and Absorbing Sets as Deviations on the Computation Trees of LDPC Codes

نویسندگان

  • Eric Psota
  • Lance C. Pérez
چکیده

The error mechanisms of iterative message-passing decoders for low-density parity-check codes are studied. A tutorial review is given of the various graphical structures, including trapping sets, stopping sets, and absorbing sets that are frequently used to characterize the errors observed in simulations of iterative decoding of low-density parity-check codes. The connections between trapping sets and deviations on computation trees are explored in depth using the notion of problematic trapping sets in order to bridge the experimental and analytic approaches to these error mechanisms. A new iterative algorithm for finding low-weight problematic trapping sets is presented and shown to be capable of identifying many trapping sets that are frequently observed during iterative decoding of low-density parity-check codes on the additive white Gaussian noise channel. Finally, a new method is given for characterizing the weight of deviations that result from problematic trapping sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Average Number of Different Categories of Trapping Sets, Absorbing Sets and Stopping Sets in Random Regular and Irregular LDPC Code Ensembles

The performance of low-density parity-check (LDPC) codes in the error floor region is closely related to some combinatorial structures of the code’s Tanner graph, collectively referred to as trapping sets (TSs). In this paper, we study the asymptotic average number of different types of trapping sets such as elementary TSs (ETS), leafless ETSs (LETS), absorbing sets (ABS), elementary ABSs (EABS...

متن کامل

A new Algorithm to construct LDPC codes with large stopping sets

A new algorithm to construct good low-density parity-check (LDPC) codes with large stopping sets is presented. Since the minimum stopping set characterizes an LDPC code, searching for stopping sets in LDPC codes is an important issue. Large minimum stopping sets avoid the LDPC code to get trapped in cycles specially on the binary erasure channel. Dealing with stopping sets is not an easy task s...

متن کامل

Finding Small Stopping Sets in the Tanner Graphs of LDPC Codes

The performance of low-density parity-check (LDPC) codes over the binary erasure channel for a low erasure probability is limited by small stopping sets. The frame error rate over the additive white Gaussian noise (AWGN) channel for a high signal-to-noise ratio is limited by small trapping sets and by the minimum distance of the LDPC code, which is equal to the codeword with the minimal Hamming...

متن کامل

A Survey on Trapping Sets and Stopping Sets

LDPC codes are used in many applications, however, their error correcting capabilities are limited by the presence of stopping sets and trappins sets. Trappins sets and stopping sets occur when specific low-wiehgt error patterns cause a decoder to fail. Trapping sets were first discovered with investigation of the error floor of the Margulis code. Possible solutions are constructions which avoi...

متن کامل

Optimization of Parity-Check Matrices of LDPC Codes

Low-density parity-check (LDPC) codes are widely used in communications due to their excellent practical performance. Error probability of LDPC code under iterative decoding on the binary erasure channel is determined by a class of combinatorial objects, called stopping sets. Stopping sets of small size are the reason for the decoder failures. Stopping redundancy is defined as the minimum numbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Electrical and Computer Engineering

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010